

Subtle morpho-phonetic differences in English stems and word-final /s/ influence listeners' comprehension

Dominic Schmitz¹, Marie Engemann¹, Ingo Plag¹, and Dinah Baer-Henney²

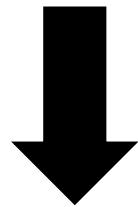
dominic.schmitz
@uni-duesseldorf.de

marie.engemann
@uni-duesseldorf.de

ingo.plag
@uni-duesseldorf.de

dinah.baer-henney
@uni-duesseldorf.de

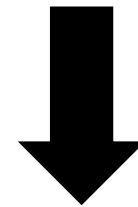
¹English Language and Linguistics & ²Department of Linguistics and Information Science @ Heinrich-Heine-Universität Düsseldorf


Background

Stems

Production

Pseudo-stems of monomorphemic words vs. **stems** of complex words show durational differences in production [1, 2]


daze vs. *days*
/deɪ/ /deɪ/

Word-Final /s/

Production

Different types of **word-final /s/**, e.g. non-morphemic, suffix, and clitics, show durational differences in production [3, 4, 5, 6]

Can listeners **perceive** these differences?

Can listeners make use of these differences in **comprehension**?

Research Questions

Stems

Perception

Can listeners perceive durational differences between **the same strings of segments** in complex and simplex words?

Word-Final /s/

Perception

Can listeners perceive durational differences between **different types of word-final /s/** in complex and simplex words?

Perception

Which differences can be perceived?

Do listeners show a variable pattern in that some can perceive the differences and some cannot?

Comprehension

Are listeners affected in their lexical processing when they are exposed to a form with a stem-suffix mismatch?

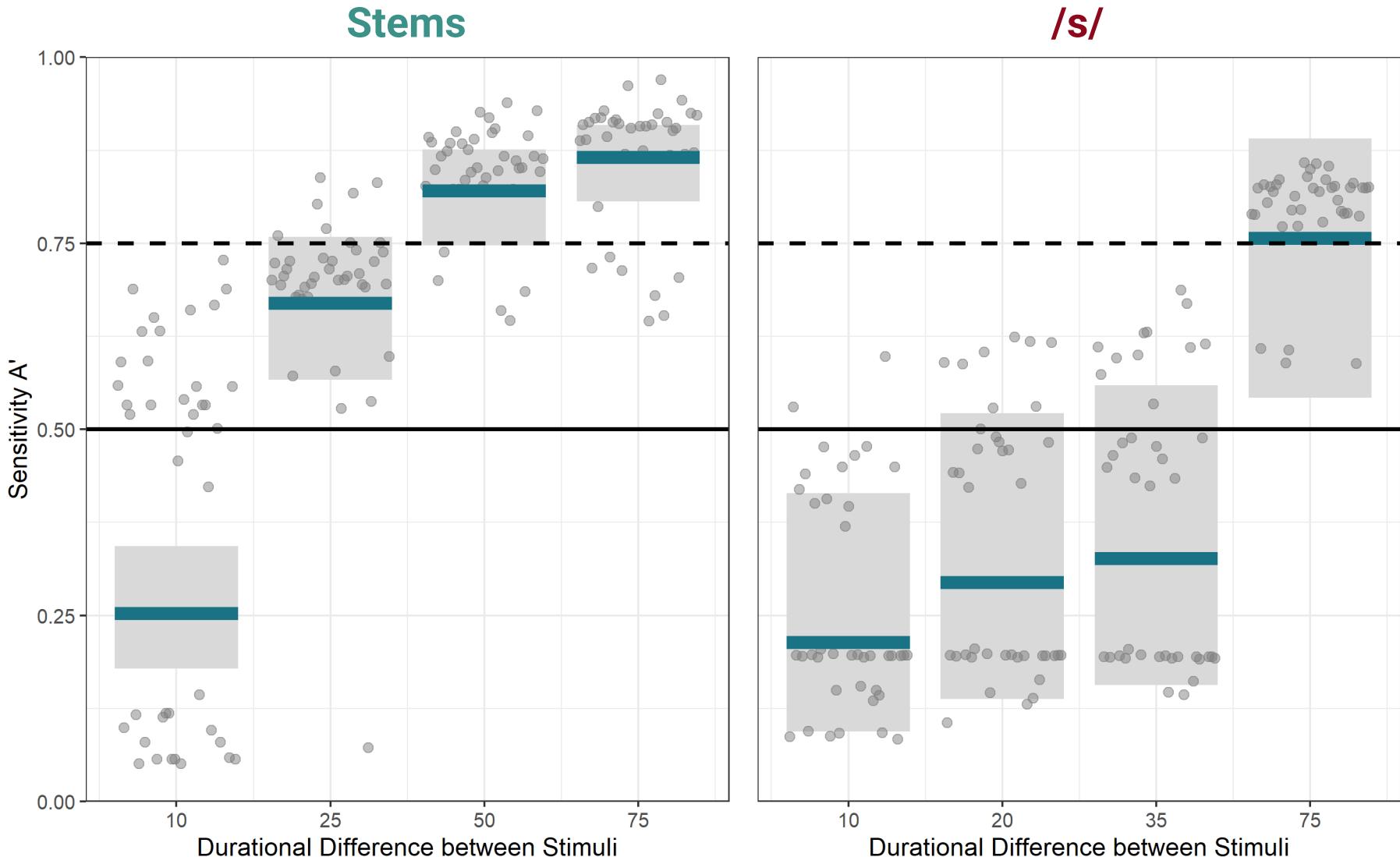
Method

Manipulation of stems: *daze* / *days*

- **A**: unmanipulated, original length
- **B**: stem duration **+10 ms**
- **C**: stem duration **+25 ms**
- **D**: stem duration **+50 ms**
- **E**: stem duration **+75 ms**

Stimuli for stems

Pair	Same / Different	Durational Difference
A vs. B	Different	+10 ms
A vs. C	Different	+25 ms
A vs. D	Different	+50 ms
A vs. E	Different	+75 ms
A vs. A	Same	none
B vs. B	Same	none
C vs. C	Same	none
D vs. D	Same	none
E vs. E	Same	none


Manipulation of /s/: *bo[ks]* / *step[s]*

- **A**: prototypical length
- **B**: non-morphemic /s/ **-10 ms**; plural /s/ **+10 ms**
- **C**: non-morphemic /s/ **-20 ms**; plural /s/ **+20 ms**
- **D**: non-morphemic /s/ **-35 ms**; plural /s/ **+35 ms**
- **E**: non-morphemic /s/ **-75 ms**; plural /s/ **+75 ms**

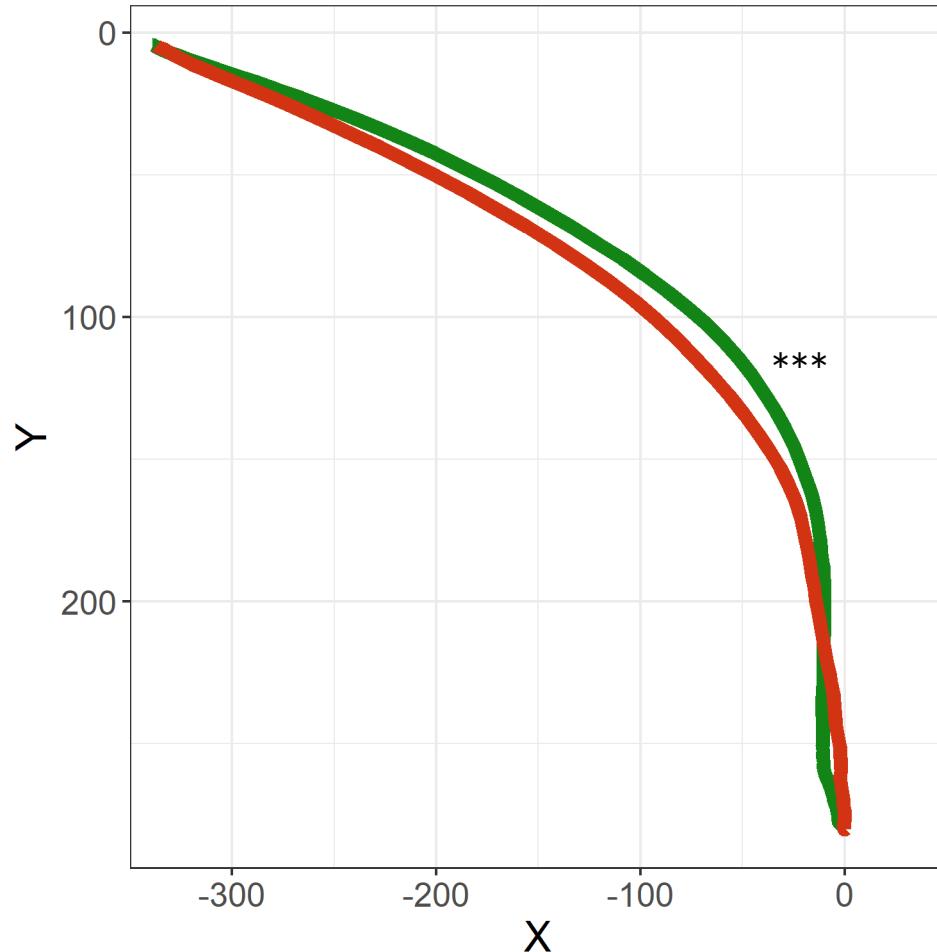
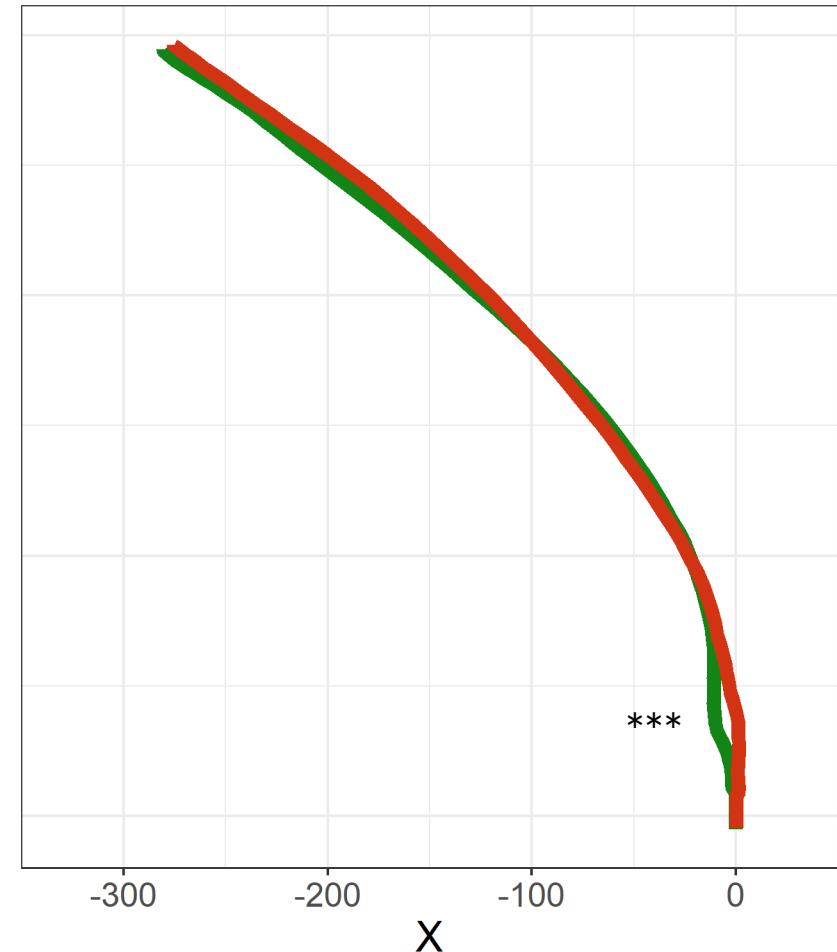
Stimuli for /s/

Pair	Same / Different	Durational Difference
A vs. B	Different	±10 ms
A vs. C	Different	±20 ms
A vs. D	Different	±35 ms
A vs. E	Different	±75 ms
A vs. A	Same	none
B vs. B	Same	none
C vs. C	Same	none
D vs. D	Same	none
E vs. E	Same	none

Overall Sensitivity

Method

- participants listened to an audio stimulus and were shown 2 options on the screen
 - stems: monomorphemic or plural (e.g. *days* vs. *daze*)
 - word final /s/: singular or plural ('one' vs. 'two or more')
- they were asked to click with their mouse on the option that they think they heard
- mouse-tracks were recorded, then analysed using quantile generalized additive mixed models
- expectation: mouse-tracks should differ by condition



Stimuli for stems

Condition	Example	/z/
matched	<i>daze</i> [deɪ] + <i>daze</i> [z]	mono-morphemic
mismatched	<i>days</i> [deɪ] + <i>daze</i> [z]	
matched	<i>days</i> [deɪ] + <i>days</i> [z]	plural
mismatched	<i>daze</i> [deɪ] + <i>days</i> [z]	

Stimuli for /s/

Condition	Example	Stem
matched	<i>corpse</i> [kɔ:p] + <i>corpse</i> [s]	mono-morphemic
mismatched	<i>corpse</i> [kɔ:p] + <i>steps</i> [s]	
matched	<i>steps</i> [stɛp] + <i>steps</i> [s]	plural
mismatched	<i>steps</i> [stɛp] + <i>corpse</i> [s]	

Mouse-Tracks

Stems**/s/**

matched

mismatched

Conclusion

- listeners can perceive subtle durational differences in **stems** and **word-final /s/**
- listeners show varying sensitivity
 - some can hear durational differences earlier than others
 - durational differences are more easily perceived in **stems** than in **word-final /s/**
- listener comprehension is significantly influenced by mismatched durational information for both, **stems** and **word-final /s/**
- such morpho-phonetic effects are unexpected and unexplained in most extant models of language perception and comprehension [7, 8, 9]
- our results call for more adequate models of perception and comprehension

Thank you!

References

- [1] Seyfarth, S., Garellek, M., Gillingham, G., Ackerman, F., & Malouf, R. (2017). Acoustic differences in morphologically-distinct homophones. *Language, Cognition and Neuroscience*, 33(1), 32–49. <https://doi.org/10.1080/23273798.2017.1359634>
- [2] Engemann, M., & Plag, I. (2021). Paradigm uniformity effects in spontaneous speech. *The Mental Lexicon*, 16(1).
- [3] Plag, I., Homann, J., & Kunter, G. (2017). Homophony and morphology: The acoustics of word-final S in English. *Journal of Linguistics*, 53(1), 181–216. <https://doi.org/10.1017/S002226715000183>
- [4] Plag, I., Lohmann, A., Ben Hedia, S., & Zimmermann, J. (2020). An <s> is an <s’>, or is it? Plural and genitive-plural are not homophonous. In L. Körtvélyessy & P. Štekauer (Eds.), *Complex Words*. Cambridge University Press.
- [5] Tomaschek, F., Plag, I., Ernestus, M., & Baayen, R. H. (2019). Phonetic effects of morphology and context: Modeling the duration of word-final S in English with naïve discriminative learning. *Journal of Linguistics*, 2019, 1–39. <https://doi.org/10.1017/S002226719000203>
- [6] Schmitz, D., Baer-Henney, D., & Plag, I. (2021). The duration of word-final /s/ differs across morphological categories in English: Evidence from pseudowords. *Phonetica*. <https://doi.org/10.1515/phon-2021-2013>
- [7] Roelofs, A. P. A., & Ferreira, V. S. (2019). The architecture of speaking. In P. Hagoort (ed.), *Human language: From genes and brains to behavior*, 35–50. Cambridge, MA: MIT Press.
- [8] Turk, A., & Shattuck-Hufnagel, S. (2020). *Speech Timing*. Oxford University Press. <https://doi.org/10.1093/oso/9780198795421.001.0001>
- [9] Cutler, A. (2012). *Native Listening: Language Experience and the Recognition of Spoken Words*. MIT.